
2021 5th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT)

Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh

978-1-6654-9522-6/21/$31.00 ©2021 IEEE

Recognition of Basic Handwritten Math Symbols

Using Convolutional Neural Network with Data

Augmentation

Rafi Ibn Sultan

Department of Computer Science and

Engineering,

Varendra University

Rajshahi, Bangladesh

rafi.ruet13@gmail.com

Md. Nahid Hasan

Department of Computer Science and

Engineering,

Varendra University

Rajshahi, Bangladesh

nahid12cse@gmail.com

Mohammad Kasedullah

Department of Computer Science and

Engineering,

Varendra University

Rajshahi, Bangladesh

kasid.raj@gmail.com

Abstract—In the ever-updating digital world, automatic

handwritten math symbols classification (HMC) plays many

vital roles in the advancement of computer-aided systems. It

is the main foundation of perfecting one of the most

challenging tasks out there: recognizing handwritten

mathematical formulas. As with the other similar automated

handwritten characters classifications tasks, HMC also faces

various difficulties while attempting to correctly classify

images. As people tend to have distinct types of handwriting

styles and unique ways to write symbols, a simple character

may have infinite versions of itself. In our research, we

focused on the classification of such images of numerous

handwritten mathematical symbols. For this classification, we

have developed a convolutional neural network (CNN) model

and worked with three different datasets to test our model’s

efficiency. We introduced different data augmentation

techniques to construct various versions of the already

available images. This created a virtual mimicry of people’s

tendency to write the same character in many styles. Our

CNN model of 11 layers (6 were convolutional layers) worked

to classify 16 classes (each denoting a mathematical symbol or

digit) and had an accuracy of 98.71%, 99.01%, and 99.85%

respectively on three publicly available datasets. To our

knowledge, our model performed better than every other

research work in this field. Considering this remarkable

success, we are bent on working further on this and creating

a fully working app that would eventually be able to

automatically classify handwritten mathematical formulas.

Keywords— Handwritten math symbols recognition;

Classification; CNN; Deep Convolutional Neural Network;

Data augmentation; Pre-processing; Optimization; Multiple

Datasets

I. INTRODUCTION

Handwritten symbol recognition (HMC) is a subset of
the vast field of handwriting character recognition. This is
particularly important for scientific and educational
purposes as these symbols are used very commonly in
various mathematical formulas and equations. Researchers
have been working on automatic recognition of
mathematical notation for about half a century now [1].
Due to the popularization of modern touch-based or pen-

based electronics where people can easily scribble
mathematical formulas, this has been researched actively
by scholars of the field [2]. Despite so many years of
ongoing research, existing systems are still far off from
perfect. This work focuses on addressing a subset of
automatic mathematical notation recognition by tackling
the issue of mathematical symbol recognition.

This research focuses on offline recognition [3] of
characters where two-dimensional images of handwritten
character images are loaded for the recognition process.
The final goal of this research work is to create a working
app that would be able to recognize a handwritten
mathematical formula from scanning or capturing an image
containing such formulas. Typically, a handwritten
mathematical formula consists of a sequence of characters
that are to be segmented and recognized before deciding on
the formula. In this paper, we focused on the more
challenging task of the two domains, classifying the
segmented basic handwritten math symbols.

In any handwritten character recognition, the task of
automatic recognition gets complex due to the inherent
structural similarities between the characters and the
numerous appearances and forms each one can take [4]. In
the case of mathematical characters, this is no different.
There are roughly over 300 classes of symbols. At times
many of those symbols are distinguished from one another
by a simple dot or a bar. Any classification algorithm can
get confused due to this structural similarity. In this paper,
we have worked with 16 basic symbols: the ten digits (0-
9), the mathematical signs (addition: +, subtraction: -,
multiplication: ×, division: ÷), the decimal sign (.) and the
equal sign (=). A Convolutional Neural Network (CNN) is
developed as the classifier to classify these above-
mentioned 16 classes of symbols.

The model has been successful in recognizing math
symbol images from one of the 16 labels. The model has
outperformed the performance of the recent research in this
field. Implementing this on a larger scale will be a great
step towards greater success.

II. RELATED WORKS

 In this section, we skim through the recent research
works that have been done on handwritten math symbols
classification following various approaches. The most
recent work to date would be Ayeb et al. [5] using the
transfer learning technique on various pre-trained CNNs to
achieve 83.68% accuracy on a comparatively large dataset
of 101 class labels. Working with the same dataset, Nguyen
et al. [6] proposed a bidirectional recurrent neural network
for segmenting and classifying, resulting in a final accuracy
of 92.30% in classification. Like the previous work [6],
Nazemi et al. [7] approached to solve this issue by utilizing
two pre-trained CNN models LeNet and SqueezNet,
reaching a final accuracy of 90% while evaluating the
model on the test dataset. Dong et al. [8] constructed a
novel CNN model named HMS-VGGNet for this
classification task. The model earned a maximum of
92.42% Top-1 accuracy on the datasets they chose for
testing.

III. PROPOSED METHODOLOGY

The rudimentary stages of our proposed method for this
research work are illustrated here in fig. 1. These phases
shown in the figure will be explained in the following
sections of the paper in due time.

IV. DATA SOURCE

A. Sample Collection

In this work, we have used three different public
datasets of handwritten math symbols. To identify them
throughout the paper, we will be naming them Dataset I [9],
Dataset II [10], and Dataset III [11] respectively. Each of
the datasets contained a significant number of images
where each image belonging to a particular handwritten
symbol class.

Dataset I contained a little over 9000 images, each
attributing to one of the 16 class labels of handwritten math
symbols that we discussed earlier. Each class contained
about 500 image samples with a resolution of 400x400
pixels. Dataset II consisted of a total of 8,567 images of the
16 class labels, common to the previous dataset. These
images had a resolution of 155x155 pixels contained in
JPEG format. Dataset III is significantly larger than the
previous two datasets. It had over 100000 images of 82
different labels. Each image was in JPEG format with a
45x45 pixels resolution.

Dataset III was initially extracted and parsed into this
isolated image dataset from a well-known public dataset:
CHROME 2014 [12]. To correlate with the other two
datasets, we have decided to work with only 15 labels (that
were mutually inclusive of the other datasets) from the
available 82 labels. Although Dataset III had a vast number
of classes, 15 of them were common to the previously
mentioned 16 classes. The class label Decimal (.) was
unavailable here, so we decided not to include it in there.

To have a more understanding of the datasets, one
random image from each of the classes available from each
dataset is illustrated in fig. 2.

Fig. 1. Proposed methodology

Fig. 2. Random images from each label of every dataset.

B. Datasets Splitting & Preprocessing

At the initial state, the datasets were not ready to be
fed through the mode. We had to split each of the datasets
into three parts: training, validation, and test sections. The
working method of the proposed research was to use
training and validation datasets to train the model. Later,
the weights gained during training were saved. In the next
step, a separate dataset i.e. the test dataset was used to
evaluate our model’s performance. Therefore, using
different sets of images for compiling and evaluating made
sure that no bias was involved in the entire process and the
result we showed.

Dataset I was split into three sections: 80%, 15%, and
5% of the total images. These three parts were selected to
be train, validation, and test datasets, respectively. Dataset
II was already split into train and validation portions when
we collected it. We further split the training dataset and
took 8% of its training images to make the test dataset. For
Dataset III, we took the 15 labels that we discussed earlier
from the available 82 labels and ignored the rest. Again,
this was also split into 80%, 15%, and 5% for the three
major parts, respectively. The summary of the three
datasets (after the split) is illustrated more graphically in
fig. 3.

One of the reasons we chose CNN as the algorithm for
this work is that it needs very little preprocessing of data
compared to other classification techniques available [13].
After the datasets were split into desired slices of our
choice, a little bit of preprocessing was needed to be done.
First, all the images from the three datasets were resized
into 50x50 pixels. We finalized these dimensions after
tweaking and trying with various resolutions.

Fig. 3. Summary of the datasets

Picking a reasonable resolution number for the images

without compromising the results was one of the main

prerequisites before the training. Images of lower

resolution tend to possess lower details. As a result, some

key features could have been missed while extracting if we

had resized them too low. Again, if we had taken

comparatively larger images, it may have guaranteed more

features, but it would have also made the training process

very slow. After much consideration and different tryouts,

we picked this resolution (50x50) as we believed this

would not only be large enough to provide enough details

but also not be too large that the training would take an

indefinite time.

After the resizing was done, we constructed matrices

from each of the train, validation, and test portions of the

datasets. Next, we normalized the images by converting the

pixel values in the range between 0 and 1 by dividing each

pixel value by the number 255 (which is the highest value

a pixel can have). Then each matrix was converted to

numerous one-dimensional arrays where each array

represented the values of a particular image. The class label

of each image was also present at the end of those arrays to

be used while training the data. After that, (x_train &

y_train) arrays were created that represented the training

dataset, where the values of the images were put in the rows

of x_train. The array y_train denoted the class label values

of the images sequentially. Similarly, (x_val & y_val) and

(x_test & y_test) were created to represent validation and

test datasets respectively. From these arrays, (x_train &

y_train) and (x_val & y_val) were used for training the

model and (x_test & y_test) were used for the final

evaluation of the model’s performance.

C. Data Augmentation

Data augmentation technique is the process of creating

artificial data by modifying the available ones. This

modification may include different versions of shifting,

rotating, scaling, flipping, etc. Although CNN is generally

invariant to such modifications while training, such data

augmentation techniques make the model more robust

during feature extraction [14]. As handwriting differs from

person to person, a single symbol is typically written in

numerous styles of choices. The fundamental features that

distinguish one symbol from another are naturally the same

for a particular symbol. However, they vary in styles and

strokes from person to person. This type of variation is in a

way similar to the principles of data augmentation. With

this thought in mind, we used different data augmentation

techniques such as 30-degree rotation, 20% zoom, different

flips, ZCA whitening, etc to our already available data.

With augmentation, we found the accuracy to be increased

by a significant amount compared to the data without

augmentation. Therefore, we decided to keep these

augmentation techniques to create diversity in the available

data.

V. THE CNN MODEL

A. Building the Model

CNN has been the forerunner algorithm in different
image classification tasks for quite a while now [15].
CNN’s unique ability to learn features automatically from
a little preprocessed data makes it an in-demand algorithm
in computer vision challenges [9]. CNN is an advanced
version of the ever-popular Artificial Neural Network
(ANN) which incorporates the concept of convolutions to
extract features. Just like ANN, CNN also mimics the
human brain’s “learning abilities” while training the model
to classify images. A typical CNN consists of multiple
layers such as an input layer, convolutional layers, max
pooling layers, fully connected layers, etc. All these layers
work up towards the final output layer to classify the
inputted image to a particular class [4].

A novel CNN architecture was constructed to train the
data. In this step, the built model was loaded from the disk
for training purposes. The CNN model that was developed
for this research had a total of 6 convolutional layers and a
max pooling layer after every 2 convolutional layers. There
was also a fully connected layer just before the output
layer. The model is depicted in fig. 4 for further illustration.
The layers in the proposed CNN model are described
below:

1. Convolutional Layer 1 & 2: As the name
suggests, Convolutional layers are the core parts
of any CNN model. It works by placing filters
over an array of image pixels. The resultant values
are feature maps that are fed into the next layer. If
𝑥 denotes the inputs, 𝑤 is the filter weights, and 𝑏
is the bias term then the convolutional equation
would be:

𝑦 = 𝑤𝑇𝑥 + 𝑏 (1)
This first convolutional layer took images of
shape 50x50x3. For the convolution purpose, 64
filters (size of 3x3) were used in this layer. An
activation function i.e. ReLU (Rectified Linear
Unit) was used to introduce non-linearity to the
model. ReLU activation function is solely
responsible for converting the resultant values
after convoluting into outputs for the next layer.
The ReLU activation function can be expressed as
the following function:

𝑓(𝑥) = max(0, 𝑥) (2)
The feature map generated in this layer had the
shape of 50x50x64, where 64 denotes the number
of filters used. The "same padding" technique was
used so that the output shape remained the same.
For initializing a bias term, the default value
‘zeroes” was selected. The second convolutional

layer was identical to the first convolutional layer
with the same setup.

2. Max Pooling Layer 1: Max pooling layers are
responsible for reducing the sample size of a
particular feature map i.e. outputs from the
previous layer. This layer consequently is
responsible for reducing the number of
parameters and avoiding the overfitting problem
while training the data. The first max pooling
layer (pool size = 2x2) reduced the shape to
exactly half (25x25x64). A dropout [12] of the
score (0.5) was introduced at the end of the layer.
Dropout randomly sets a subset of the neurons to
zero in a particular layout. Therefore, only a
subsection of the original network was used and
aided in reducing the overfitting problem as well.

3. Convolutional Layer 3 & 4: Same as the first
two convolutional layers, both layers also had the
same setup except for the number of filters. The
third and fourth convolutional layers had 128
filters for convolution. In a similar fashion to the
previous layers, this step converted the current
input shape to 25x25x128.

4. Max Pooling Layer 2: After two convolutional
layers a max pooling layer was introduced
throughout the model. This max pooling layer
also had the identical setup as the max pooling
layer before and reduced the current output to a
size that was exactly half (12x12x128).

5. Convolutional Layer 5 & 6: The fifth and sixth
convolutional layers continued to use the same
setup as previous convolution layers of the model.
The filters were again increased here into 256.
The output shape was then turned into
12x12x256.

6. Max Pooling Layer 3: This max pooling layer
was a carbon copy of the previous pooling layers
resulting in the new output shape into 6x6x256.

7. Fully Connected Layer: The final layer before
the output layer was a fully connected layer of 128
neurons. We flattened the previous layer’s output
to create a single long feature vector which then
subsequently passed to the fully connected layer.

8. Output Layer: An activation function i.e.
Softmax Function was used in this layer that
calculated the net output of the 16 neurons (or 15
for the third dataset). From the probability score
generated for each of the nodes, the highest value
of a class would determine the image to be
belonging to that class label.

The total learnable parameters of the model are
2,327,248. The summary of the model is given in table 1.

B. Compiling the Model and Optimization

To facilitate both the training and compiling processes
of the model, we took the help of some optimization
techniques. Instead of the filters having random weights in
each convolutional layer, the Xavier Initialization [17]
method was used to initialize the weights at first. Using this
method, it was possible to take the weights from a uniform
distribution rather than a random distribution of data
samples.

Moreover, while compiling the model we utilized the
Adam optimization [18] technique to provide an adaptive
learning rate throughout the training process. The learning
rate oversees the convergence rate of updating the weights
of the filters. Instead of having a fixed global learning rate
(the classical stochastic gradient descent), Adam provides
an adaptive learning rate that keeps updating carefully
considering the moving average of the gradient. This
ensures individual learning rates are provided for different
parameters of the model. As a result, we were released from
the burden of experimenting with different learning rates
before finalizing one.

TABLE I. SUMMARY OF EACH LAYER OF THE PROPOSED

MODEL

Layer Output Shape No. of Parameters

Convolution 1 (None, 50, 50, 64) 1792

Convolution 2 (None, 50, 50, 64) 36928

Max Pool 1 (None, 25, 25, 64) 0

Convolution 3 (None, 25, 25, 128) 73856

Convolution 4 (None, 25, 25, 128) 147584

Max Pool 2 (None, 12, 12, 128) 0

Convolution 5 (None, 12, 12, 256) 295168

Convolution 6 (None, 12, 12, 256) 590080

Max Pool 3 (None, 6, 6, 256) 0

Fully Connected Layer (None, 128) 295040

Output (None, 16) 2064

The goal of a CNN model is to update the weights in a
way that will minimize the loss during the training process.
To calculate the loss, we selected the sparse categorical
cross-entropy loss function. Before choosing the loss
function, we had to analyze the data in our hands. The
output classes were mutual, meaning an image could
belong solely to one specific class. For this type of data
distribution, the cross-entropy loss function works in a
swift manner with great precision. If 𝑆 denotes samples and
𝐶 denotes classes, then the function describing the sparse
categorical cross-entropy loss function would be:

−
1

𝑁
∑ ∑ 1𝑠∈𝐶 log𝑝(𝑠 ∈ 𝐶)𝑠∈𝐶𝑠∈𝑆 (3)

Fig. 4. An illustration of the structure of our proposed CNN architecture

C. Training the Model

In the training process, mini-batches of size 32 were
used. An initial epoch number of 100 was used to train the
model. However, the concept of early stopping was
applied, where if the accuracy did not improve after 10
epochs, then the training procedure would have stopped.
While training, the three respective datasets were stopped
after epoch 31, epoch 29, and epoch 42 respectively. For
having better control of the learning rate, we also
implemented the ReduceLROnPlateau class [19]. It
reduces the learning rate if the validation loss does not
improve in a couple of epochs. In this model, the current
learning rate decayed after 3 epochs by a factor of 0.5 (the
minimum learning rate it could have reached was 0.00001).
After the training was completed, both the model and the
weights were saved on the disk for further use.

VI. EXPERIMENTAL ANALYSIS

 The implemented CNN model was trained on an
NVIDIA GeForce GTX 1650 (8GB GDDR6 memory) with
system RAM of 8GB. It implemented the Keras API on top
of Tensorflow (CUDA toolkit 11.0.221, cuDNN v7.6.5,
and Python 3.8).

The continuous update of the training accuracy and the
validation accuracy of these datasets are illustrated in fig.
5. Summary of the model’s performance based on the
accuracy of the three datasets are detailed in table 2.
Analyzing the table, we can conclude that we achieved an
average accuracy of 99.19%. Fig. 6 illustrates the
progression of loss decreasing during the training and
validation processes with respect to epochs.

Further, we also analyzed the performance of the model
based on F1-accuracy. The three respective F1 accuracies
of the three datasets are 0.99, 0.99, 1.00 and the average F1
accuracy we achieved was 0.99. A comparison between the
proposed model and the related works is depicted in table
3.

TABLE II. SUMMARY OF EACH LAYER OF THE PROPOSED MODEL

Dataset Training

Accuracy

Validation

Accuracy

Test

Accuracy

Dataset I 99.41% 99.11% 98.71%

Dataset II 99.35% 99.11% 99.01%

Dataset III 99.83% 99.93% 99.85%

TABLE III. COMPARING THE MODEL PERFORMANCE WITH OTHERS

Related Work Related Work Accuracy

Ayeb et al. [5] 83.68%

Nguyen et al. [6] 92.30%

Nazemi et al. [7] 90%

Dong et al. [8] 92.42%

Proposed CNN Model 99.19% (average)

Comparing the accuracy and the F1-accuracy with the

recent works on handwritten math symbols classification,
we can conclude that our work has surpassed them.

(a)

(b)

(c)

Fig. 5. Progress of training accuracy and validation accuracy of a)
Dataset I b) Dataset II c) Dataset III

VII. DISCUSSION & LIMITATIONS

As per the analysis section, we can conclude that our
model has performed way better than some recent works in
this research field. There lies a couple of factors working
behind the model’s success. The first factor would be
implementing data augmentation techniques to the existing
data, making the model more robust and recognizing
character shapes of different norms than usual.

(a)

(b)

(c)

Fig. 6. Training loss vs. validation loss of a) Dataset I b) Dataset II c)
Dataset III

Also using a couple of optimization techniques such as
Xavier Initialization and Adam optimization while
compiling, optimized the technique of learning the weights.
Finally, this particular CNN architecture that we gathered
after much tweaking with various layers, filter sizes,
activation functions, etc. was, in our belief the core reason
behind such remarkable results.

There are some limitations in the work that we must
point out. Although we worked with three different datasets
to evaluate our model, the better way would have been to
combine all three datasets into one big dataset to train and
later test on some new data. Furthermore, this model is
prepared to recognize only isolated images, and if an image
contains anything other than the character itself it will face
trouble in recognizing accurately. Finally, the last
drawback to this model would be that it can only recognize
a handful of 16 class labels of math symbols which is pretty
small compared to the numerous math symbols out there.

VIII. CONCLUSION

To gain a clearer grasp of the proposed model’s
performance on classifying handwritten math symbols, we
worked with three different datasets. In this way, diversity
was ensured, and the model was made to be more robust in
classifying. Although the model performed exceedingly
well, we worked with about 16 classes, which is a small
subsection of the total number of symbols out there. In our
future work, we have set two objectives to accomplish.
Firstly, we would like to test our model on all 82 classes of
the CHROME dataset. This would ensure the recognition
of virtually a complete set of all mathematical symbols.
Secondly, after the completion of the first objective, we are
interested in eventually moving on to classifying whole
mathematical formulas instead of isolated characters and
creating an app which in our humble opinion would be a
great asset to the users.

REFERENCES

[1] R. H. Anderson, “Syntax-Directed Recognition of Hand-Printed

Two-Dimensional Mathematics,” in Symposium on Interactive

Systems for Experimental Applied Mathematics: Proceedings of the

Association for Computing Machinery Inc. Symposium, 1967, pp.

436–459. doi: 10.1145/2402536.2402585.

[2] A. D. Le, B. Indurkhya, and M. Nakagawa, “Pattern generation

strategies for improving recognition of handwritten mathematical

expressions,” Pattern Recognition Letters, vol. 128, pp. 255–262,

2019.

[3] B. Zhu and M. Nakagawa, “Online handwritten Chinese/Japanese

character recognition,” Advance in Character Recognition, InTech,

pp. 51–68, 2012.

[4] M. N. Hasan, R. I. Sultan and M. Kasedullah, "An Automated

System for Recognizing Isolated Handwritten Bangla Characters

using Deep Convolutional Neural Network," 2021 IEEE 11th IEEE

Symposium on Computer Applications & Industrial Electronics

(ISCAIE), 2021, pp. 13-18, doi:

10.1109/ISCAIE51753.2021.9431799.

[5] K. K. Ayeb, Y. Meguebli, and A. K. Echi, “Deep Learning

Architecture for Off-Line Recognition of Handwritten Math

Symbols,” Pattern Recognition and Artificial Intelligence, vol.

1322, p. 200, 2021.

[6] C. T. Nguyen, T.-N. Truong, H. Q. Ung, and M. Nakagawa, “Online

Handwritten Mathematical Symbol Segmentation and Recognition

with Bidirectional Context,” in 2020 17th International Conference

on Frontiers in Handwriting Recognition (ICFHR), 2020, pp. 355–

360.

[7] A. Nazemi, N. Tavakolian, D. Fitzpatrick, C. Y. Suen, and others,

“Offline handwritten mathematical symbol recognition utilising

deep learning,” arXiv preprint arXiv:1910.07395, 2019.

[8] L. Dong and H. Liu, “Recognition of offline handwritten

mathematical symbols using convolutional neural networks,” in

International Conference on Image and Graphics, 2017, pp. 149–

161.

[9] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide

to convolutional neural networks for computer vision,” Synthesis

Lectures on Computer Vision, vol. 8, no. 1, pp. 1–207, 2018.

[10] C. Zhao, (2020, May). Handwritten math symbol and digit dataset,

Version 1. Retrieved April 23, 2021 from

https://www.kaggle.com/clarencezhao/handwritten-math-symbol-

dataset.

[11] X. Nano, (2017, January). Handwritten math symbol and digit

dataset, Version 2. Retrieved April 23, 2021 from

https://www.kaggle.com/xainano/handwrittenmathsymbols.

[12] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain,

“ICFHR2016 CROHME: Competition on recognition of online

handwritten mathematical expressions,” in 2016 15th International

Conference on Frontiers in Handwriting Recognition (ICFHR),

2016, pp. 607–612.

[13] L. Eren, T. Ince, and S. Kiranyaz, “A generic intelligent bearing

fault diagnosis system using compact adaptive 1D CNN classifier,”

Journal of Signal Processing Systems, vol. 91, no. 2, pp. 179–189,

2019.

[14] D.-X. Xue, R. Zhang, H. Feng, and Y.-L. Wang, “CNN-SVM for

microvascular morphological type recognition with data

augmentation,” Journal of medical and biological engineering, vol.

36, no. 6, pp. 755–764, 2016.

[15] Y. LeCun, K. Kavukcuoglu and C. Farabet, "Convolutional

networks and applications in vision," Proceedings of 2010 IEEE

International Symposium on Circuits and Systems, 2010, pp. 253-

256, doi: 10.1109/ISCAS.2010.5537907.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, “Dropout: a simple way to prevent neural networks

from overfitting,” The journal of machine learning research, vol.

15, no. 1, pp. 1929–1958, 2014.

[17] X. Glorot and Y. Bengio, “Understanding the difficulty of training

deep feedforward neural networks,” in Proceedings of the thirteenth

international conference on artificial intelligence and statistics,

2010, pp. 249–256.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

[19] S. Reddi, M. Zaheer, D. Sachan, S. Kale, and S. Kumar, “Adaptive

methods for nonconvex optimization,” Proceeding of 32nd

Conference on Neural Information Processing Systems (NIPS

2018), 2018.

