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Abstract—In the ever-updating digital world, automatic 

handwritten math symbols classification (HMC) plays many 

vital roles in the advancement of computer-aided systems. It 

is the main foundation of perfecting one of the most 

challenging tasks out there: recognizing handwritten 

mathematical formulas. As with the other similar automated 

handwritten characters classifications tasks, HMC also faces 

various difficulties while attempting to correctly classify 

images. As people tend to have distinct types of handwriting 

styles and unique ways to write symbols, a simple character 

may have infinite versions of itself. In our research, we 

focused on the classification of such images of numerous 

handwritten mathematical symbols. For this classification, we 

have developed a convolutional neural network (CNN) model 

and worked with three different datasets to test our model’s 

efficiency. We introduced different data augmentation 

techniques to construct various versions of the already 

available images. This created a virtual mimicry of people’s 

tendency to write the same character in many styles. Our 

CNN model of 11 layers (6 were convolutional layers) worked 

to classify 16 classes (each denoting a mathematical symbol or 

digit) and had an accuracy of 98.71%, 99.01%, and 99.85% 

respectively on three publicly available datasets. To our 

knowledge, our model performed better than every other 

research work in this field. Considering this remarkable 

success, we are bent on working further on this and creating 

a fully working app that would eventually be able to 

automatically classify handwritten mathematical formulas.   
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I. INTRODUCTION 

Handwritten symbol recognition (HMC) is a subset of 
the vast field of handwriting character recognition. This is 
particularly important for scientific and educational 
purposes as these symbols are used very commonly in 
various mathematical formulas and equations. Researchers 
have been working on automatic recognition of 
mathematical notation for about half a century now [1]. 
Due to the popularization of modern touch-based or pen-

based electronics where people can easily scribble 
mathematical formulas, this has been researched actively 
by scholars of the field [2]. Despite so many years of 
ongoing research, existing systems are still far off from 
perfect. This work focuses on addressing a subset of 
automatic mathematical notation recognition by tackling 
the issue of mathematical symbol recognition. 

This research focuses on offline recognition [3] of 
characters where two-dimensional images of handwritten 
character images are loaded for the recognition process. 
The final goal of this research work is to create a working 
app that would be able to recognize a handwritten 
mathematical formula from scanning or capturing an image 
containing such formulas. Typically, a handwritten 
mathematical formula consists of a sequence of characters 
that are to be segmented and recognized before deciding on 
the formula. In this paper, we focused on the more 
challenging task of the two domains, classifying the 
segmented basic handwritten math symbols. 

In any handwritten character recognition, the task of 
automatic recognition gets complex due to the inherent 
structural similarities between the characters and the 
numerous appearances and forms each one can take [4]. In 
the case of mathematical characters, this is no different. 
There are roughly over 300 classes of symbols. At times 
many of those symbols are distinguished from one another 
by a simple dot or a bar. Any classification algorithm can 
get confused due to this structural similarity. In this paper, 
we have worked with 16 basic symbols: the ten digits (0-
9), the mathematical signs (addition: +, subtraction: -, 
multiplication: ×, division: ÷), the decimal sign (.) and the 
equal sign (=). A Convolutional Neural Network (CNN) is 
developed as the classifier to classify these above-
mentioned 16 classes of symbols.  

The model has been successful in recognizing math 
symbol images from one of the 16 labels. The model has 
outperformed the performance of the recent research in this 
field. Implementing this on a larger scale will be a great 
step towards greater success. 



 

 

II. RELATED WORKS 

 In this section, we skim through the recent research 
works that have been done on handwritten math symbols 
classification following various approaches. The most 
recent work to date would be Ayeb et al. [5] using the 
transfer learning technique on various pre-trained CNNs to 
achieve 83.68% accuracy on a comparatively large dataset 
of 101 class labels. Working with the same dataset, Nguyen 
et al. [6] proposed a bidirectional recurrent neural network 
for segmenting and classifying, resulting in a final accuracy 
of 92.30% in classification. Like the previous work [6], 
Nazemi et al. [7] approached to solve this issue by utilizing 
two pre-trained CNN models LeNet and SqueezNet, 
reaching a final accuracy of 90% while evaluating the 
model on the test dataset. Dong et al. [8] constructed a 
novel CNN model named HMS-VGGNet for this 
classification task. The model earned a maximum of 
92.42% Top-1 accuracy on the datasets they chose for 
testing. 

III. PROPOSED METHODOLOGY 

The rudimentary stages of our proposed method for this 
research work are illustrated here in fig. 1. These phases 
shown in the figure will be explained in the following 
sections of the paper in due time. 

IV. DATA SOURCE 

A. Sample Collection 

In this work, we have used three different public 
datasets of handwritten math symbols. To identify them 
throughout the paper, we will be naming them Dataset I [9], 
Dataset II [10], and Dataset III [11] respectively. Each of 
the datasets contained a significant number of images 
where each image belonging to a particular handwritten 
symbol class. 

Dataset I contained a little over 9000 images, each 
attributing to one of the 16 class labels of handwritten math 
symbols that we discussed earlier. Each class contained 
about 500 image samples with a resolution of 400x400 
pixels. Dataset II consisted of a total of 8,567 images of the 
16 class labels, common to the previous dataset. These 
images had a resolution of 155x155 pixels contained in 
JPEG format. Dataset III is significantly larger than the 
previous two datasets. It had over 100000 images of 82 
different labels. Each image was in JPEG format with a 
45x45 pixels resolution.  

Dataset III was initially extracted and parsed into this 
isolated image dataset from a well-known public dataset: 
CHROME 2014 [12]. To correlate with the other two 
datasets, we have decided to work with only 15 labels (that 
were mutually inclusive of the other datasets) from the 
available 82 labels. Although Dataset III had a vast number 
of classes, 15 of them were common to the previously 
mentioned 16 classes. The class label Decimal (.) was 
unavailable here, so we decided not to include it in there.  

To have a more understanding of the datasets, one 
random image from each of the classes available from each 
dataset is illustrated in fig. 2. 

 

Fig. 1. Proposed methodology 

 

Fig. 2. Random images from each label of every dataset. 

B. Datasets Splitting & Preprocessing 

At the initial state, the datasets were not ready to be 
fed through the mode. We had to split each of the datasets 
into three parts: training, validation, and test sections. The 
working method of the proposed research was to use 
training and validation datasets to train the model. Later, 
the weights gained during training were saved. In the next 
step, a separate dataset i.e. the test dataset was used to 
evaluate our model’s performance. Therefore, using 
different sets of images for compiling and evaluating made 
sure that no bias was involved in the entire process and the 
result we showed.  

Dataset I was split into three sections: 80%, 15%, and 
5% of the total images. These three parts were selected to 
be train, validation, and test datasets, respectively. Dataset 
II was already split into train and validation portions when 
we collected it. We further split the training dataset and 
took 8% of its training images to make the test dataset. For 
Dataset III, we took the 15 labels that we discussed earlier 
from the available 82 labels and ignored the rest. Again, 
this was also split into 80%, 15%, and 5% for the three 
major parts, respectively. The summary of the three 
datasets (after the split) is illustrated more graphically in 
fig. 3. 

One of the reasons we chose CNN as the algorithm for 
this work is that it needs very little preprocessing of data 
compared to other classification techniques available [13]. 
After the datasets were split into desired slices of our 
choice, a little bit of preprocessing was needed to be done. 
First, all the images from the three datasets were resized 
into 50x50 pixels. We finalized these dimensions after 
tweaking and trying with various resolutions.    



 

 
 

 

Fig. 3. Summary of the datasets 

Picking a reasonable resolution number for the images 

without compromising the results was one of the main 

prerequisites before the training. Images of lower 

resolution tend to possess lower details. As a result, some 

key features could have been missed while extracting if we 

had resized them too low. Again, if we had taken 

comparatively larger images, it may have guaranteed more 

features, but it would have also made the training process 

very slow. After much consideration and different tryouts, 

we picked this resolution (50x50) as we believed this 

would not only be large enough to provide enough details 

but also not be too large that the training would take an 

indefinite time.  

After the resizing was done, we constructed matrices 

from each of the train, validation, and test portions of the 

datasets. Next, we normalized the images by converting the 

pixel values in the range between 0 and 1 by dividing each 

pixel value by the number 255 (which is the highest value 

a pixel can have). Then each matrix was converted to 

numerous one-dimensional arrays where each array 

represented the values of a particular image. The class label 

of each image was also present at the end of those arrays to 

be used while training the data. After that, (x_train & 

y_train) arrays were created that represented the training 

dataset, where the values of the images were put in the rows 

of x_train. The array y_train denoted the class label values 

of the images sequentially. Similarly, (x_val & y_val) and 

(x_test & y_test) were created to represent validation and 

test datasets respectively. From these arrays, (x_train & 

y_train) and (x_val & y_val) were used for training the 

model and (x_test & y_test) were used for the final 

evaluation of the model’s performance. 

C. Data Augmentation 

Data augmentation technique is the process of creating 

artificial data by modifying the available ones. This 

modification may include different versions of shifting, 

rotating, scaling, flipping, etc. Although CNN is generally 

invariant to such modifications while training, such data 

augmentation techniques make the model more robust 

during feature extraction [14]. As handwriting differs from 

person to person, a single symbol is typically written in 

numerous styles of choices. The fundamental features that 

distinguish one symbol from another are naturally the same 

for a particular symbol. However, they vary in styles and 

strokes from person to person. This type of variation is in a 

way similar to the principles of data augmentation. With 

this thought in mind, we used different data augmentation 

techniques such as 30-degree rotation, 20% zoom, different 

flips, ZCA whitening, etc to our already available data. 

With augmentation, we found the accuracy to be increased 

by a significant amount compared to the data without 

augmentation. Therefore, we decided to keep these 

augmentation techniques to create diversity in the available 

data.                                                                                                 

V. THE CNN MODEL 

A. Building the Model 

CNN has been the forerunner algorithm in different 
image classification tasks for quite a while now [15]. 
CNN’s unique ability to learn features automatically from 
a little preprocessed data makes it an in-demand algorithm 
in computer vision challenges [9]. CNN is an advanced 
version of the ever-popular Artificial Neural Network 
(ANN) which incorporates the concept of convolutions to 
extract features. Just like ANN, CNN also mimics the 
human brain’s “learning abilities” while training the model 
to classify images. A typical CNN consists of multiple 
layers such as an input layer, convolutional layers, max 
pooling layers, fully connected layers, etc. All these layers 
work up towards the final output layer to classify the 
inputted image to a particular class [4].  

A novel CNN architecture was constructed to train the 
data. In this step, the built model was loaded from the disk 
for training purposes. The CNN model that was developed 
for this research had a total of 6 convolutional layers and a 
max pooling layer after every 2 convolutional layers. There 
was also a fully connected layer just before the output 
layer. The model is depicted in fig. 4 for further illustration. 
The layers in the proposed CNN model are described 
below: 

1. Convolutional Layer 1 & 2: As the name 
suggests, Convolutional layers are the core parts 
of any CNN model. It works by placing filters 
over an array of image pixels. The resultant values 
are feature maps that are fed into the next layer. If 
𝑥 denotes the inputs, 𝑤 is the filter weights, and 𝑏 
is the bias term then the convolutional equation 
would be: 

𝑦 =  𝑤𝑇𝑥 +  𝑏                              (1) 
This first convolutional layer took images of 
shape 50x50x3. For the convolution purpose, 64 
filters (size of 3x3) were used in this layer. An 
activation function i.e. ReLU (Rectified Linear 
Unit) was used to introduce non-linearity to the 
model. ReLU activation function is solely 
responsible for converting the resultant values 
after convoluting into outputs for the next layer. 
The ReLU activation function can be expressed as 
the following function: 

𝑓(𝑥) = max(0, 𝑥)                            (2) 
The feature map generated in this layer had the 
shape of 50x50x64, where 64 denotes the number 
of filters used. The "same padding" technique was 
used so that the output shape remained the same. 
For initializing a bias term, the default value 
‘zeroes” was selected. The second convolutional 



 

 
layer was identical to the first convolutional layer 
with the same setup. 

2. Max Pooling Layer 1: Max pooling layers are 
responsible for reducing the sample size of a 
particular feature map i.e. outputs from the 
previous layer. This layer consequently is 
responsible for reducing the number of 
parameters and avoiding the overfitting problem 
while training the data. The first max pooling 
layer (pool size = 2x2) reduced the shape to 
exactly half (25x25x64). A dropout [12] of the 
score (0.5) was introduced at the end of the layer. 
Dropout randomly sets a subset of the neurons to 
zero in a particular layout. Therefore, only a 
subsection of the original network was used and 
aided in reducing the overfitting problem as well. 

3. Convolutional Layer 3 & 4: Same as the first 
two convolutional layers, both layers also had the 
same setup except for the number of filters. The 
third and fourth convolutional layers had 128 
filters for convolution. In a similar fashion to the 
previous layers, this step converted the current 
input shape to 25x25x128. 

4. Max Pooling Layer 2: After two convolutional 
layers a max pooling layer was introduced 
throughout the model. This max pooling layer 
also had the identical setup as the max pooling 
layer before and reduced the current output to a 
size that was exactly half (12x12x128). 

5. Convolutional Layer 5 & 6: The fifth and sixth 
convolutional layers continued to use the same 
setup as previous convolution layers of the model. 
The filters were again increased here into 256. 
The output shape was then turned into 
12x12x256. 

6. Max Pooling Layer 3: This max pooling layer 
was a carbon copy of the previous pooling layers 
resulting in the new output shape into 6x6x256. 

7. Fully Connected Layer: The final layer before 
the output layer was a fully connected layer of 128 
neurons. We flattened the previous layer’s output 
to create a single long feature vector which then 
subsequently passed to the fully connected layer.  

8. Output Layer: An activation function i.e. 
Softmax Function was used in this layer that 
calculated the net output of the 16 neurons (or 15 
for the third dataset). From the probability score 
generated for each of the nodes, the highest value 
of a class would determine the image to be 
belonging to that class label.  

The total learnable parameters of the model are 
2,327,248. The summary of the model is given in table 1. 

 

 

 

 

 

 

 

 

B. Compiling the Model and Optimization 

To facilitate both the training and compiling processes 
of the model, we took the help of some optimization 
techniques. Instead of the filters having random weights in 
each convolutional layer, the Xavier Initialization [17] 
method was used to initialize the weights at first. Using this 
method, it was possible to take the weights from a uniform 
distribution rather than a random distribution of data 
samples.  

Moreover, while compiling the model we utilized the 
Adam optimization [18] technique to provide an adaptive 
learning rate throughout the training process. The learning 
rate oversees the convergence rate of updating the weights 
of the filters. Instead of having a fixed global learning rate 
(the classical stochastic gradient descent), Adam provides 
an adaptive learning rate that keeps updating carefully 
considering the moving average of the gradient. This 
ensures individual learning rates are provided for different 
parameters of the model. As a result, we were released from 
the burden of experimenting with different learning rates 
before finalizing one. 

TABLE I.  SUMMARY OF EACH LAYER OF THE PROPOSED 

MODEL 

Layer Output Shape No. of Parameters 

Convolution 1 (None, 50, 50, 64) 1792 

Convolution 2 (None, 50, 50, 64) 36928 

Max Pool 1 (None, 25, 25, 64) 0 

Convolution 3 (None, 25, 25, 128) 73856 

Convolution 4 (None, 25, 25, 128) 147584 

Max Pool 2 (None, 12, 12, 128) 0 

Convolution 5 (None, 12, 12, 256) 295168 

Convolution 6 (None, 12, 12, 256) 590080 

Max Pool 3 (None, 6, 6, 256) 0 

Fully Connected Layer (None, 128) 295040 

Output (None, 16) 2064 

The goal of a CNN model is to update the weights in a 
way that will minimize the loss during the training process. 
To calculate the loss, we selected the sparse categorical 
cross-entropy loss function. Before choosing the loss 
function, we had to analyze the data in our hands. The 
output classes were mutual, meaning an image could 
belong solely to one specific class. For this type of data 
distribution, the cross-entropy loss function works in a 
swift manner with great precision. If 𝑆 denotes samples and 
𝐶 denotes classes, then the function describing the sparse 
categorical cross-entropy loss function would be: 

−
1

𝑁
∑ ∑ 1𝑠∈𝐶 log𝑝(𝑠 ∈ 𝐶)𝑠∈𝐶𝑠∈𝑆                        (3)           

 
 
 
 
 
 
 
 
 
 
 
               

Fig. 4. An illustration of the structure of our proposed CNN architecture 



 

 
C. Training the Model 

In the training process, mini-batches of size 32 were 
used. An initial epoch number of 100 was used to train the 
model. However, the concept of early stopping was 
applied, where if the accuracy did not improve after 10 
epochs, then the training procedure would have stopped. 
While training, the three respective datasets were stopped 
after epoch 31, epoch 29, and epoch 42 respectively. For 
having better control of the learning rate, we also 
implemented the ReduceLROnPlateau class [19]. It 
reduces the learning rate if the validation loss does not 
improve in a couple of epochs. In this model, the current 
learning rate decayed after 3 epochs by a factor of 0.5 (the 
minimum learning rate it could have reached was 0.00001). 
After the training was completed, both the model and the 
weights were saved on the disk for further use. 

VI. EXPERIMENTAL ANALYSIS 

    The implemented CNN model was trained on an 
NVIDIA GeForce GTX 1650 (8GB GDDR6 memory) with 
system RAM of 8GB. It implemented the Keras API on top 
of Tensorflow (CUDA toolkit 11.0.221, cuDNN v7.6.5, 
and Python 3.8).  

The continuous update of the training accuracy and the 
validation accuracy of these datasets are illustrated in fig. 
5. Summary of the model’s performance based on the 
accuracy of the three datasets are detailed in table 2. 
Analyzing the table, we can conclude that we achieved an 
average accuracy of 99.19%. Fig. 6 illustrates the 
progression of loss decreasing during the training and 
validation processes with respect to epochs. 

Further, we also analyzed the performance of the model 
based on F1-accuracy. The three respective F1 accuracies 
of the three datasets are 0.99, 0.99, 1.00 and the average F1 
accuracy we achieved was 0.99. A comparison between the 
proposed model and the related works is depicted in table 
3. 

TABLE II.  SUMMARY OF EACH LAYER OF THE PROPOSED MODEL 

Dataset Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

Dataset I 99.41% 99.11% 98.71% 

Dataset II 99.35% 99.11% 99.01% 

Dataset III 99.83% 99.93% 99.85% 

 

TABLE III.  COMPARING THE MODEL PERFORMANCE WITH OTHERS 

Related Work Related Work Accuracy 

Ayeb et al. [5] 83.68% 

Nguyen et al. [6] 92.30% 

Nazemi et al. [7] 90% 

Dong et al. [8] 92.42% 

Proposed CNN Model  99.19% (average) 

 
Comparing the accuracy and the F1-accuracy with the 

recent works on handwritten math symbols classification, 
we can conclude that our work has surpassed them. 
 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. Progress of training accuracy and validation accuracy of a) 
Dataset I b) Dataset II c) Dataset III 

VII. DISCUSSION & LIMITATIONS 

As per the analysis section, we can conclude that our 
model has performed way better than some recent works in 
this research field. There lies a couple of factors working 
behind the model’s success. The first factor would be 
implementing data augmentation techniques to the existing 
data, making the model more robust and recognizing 
character shapes of different norms than usual.  
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(c) 

Fig. 6. Training loss vs. validation loss of a) Dataset I b) Dataset II c) 
Dataset III 

Also using a couple of optimization techniques such as 
Xavier Initialization and Adam optimization while 
compiling, optimized the technique of learning the weights. 
Finally, this particular CNN architecture that we gathered 
after much tweaking with various layers, filter sizes, 
activation functions, etc. was, in our belief the core reason 
behind such remarkable results.  

There are some limitations in the work that we must 
point out. Although we worked with three different datasets 
to evaluate our model, the better way would have been to 
combine all three datasets into one big dataset to train and 
later test on some new data. Furthermore, this model is 
prepared to recognize only isolated images, and if an image 
contains anything other than the character itself it will face 
trouble in recognizing accurately. Finally, the last 
drawback to this model would be that it can only recognize 
a handful of 16 class labels of math symbols which is pretty 
small compared to the numerous math symbols out there. 

VIII. CONCLUSION 

To gain a clearer grasp of the proposed model’s 
performance on classifying handwritten math symbols, we 
worked with three different datasets. In this way, diversity 
was ensured, and the model was made to be more robust in 
classifying. Although the model performed exceedingly 
well, we worked with about 16 classes, which is a small 
subsection of the total number of symbols out there. In our 
future work, we have set two objectives to accomplish. 
Firstly, we would like to test our model on all 82 classes of 
the CHROME dataset. This would ensure the recognition 
of virtually a complete set of all mathematical symbols. 
Secondly, after the completion of the first objective, we are 
interested in eventually moving on to classifying whole 
mathematical formulas instead of isolated characters and 
creating an app which in our humble opinion would be a 
great asset to the users.  
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