
An Automated System for Recognizing Isolated

Handwritten Bangla Characters using Deep

Convolutional Neural Network
Md. Nahid Hasan

Department of Computer Science and

Engineering

Varendra University

Rajshahi, Bangladesh

nahid12cse@gmail.com

Rafi Ibn Sultan

Department of Computer Science and

Engineering

Varendra University

Rajshahi, Bangladesh

rafi.ruet13@gmail.com

Mohammad Kasedullah

Department of Computer Science and

Engineering

Varendra University

Rajshahi, Bangladesh

kasid.raj@gmail.com

Abstract—Among various handwritten character recognition of

different languages, Bangla stands as one of the most

challenging tasks. Because of its unique texture and

morphologically complex structure often classification models

do not provide the expected result as one hopes to have. In this

research, a deep novel Convolutional Neural Network (CNN) of

11 layers is proposed. Among the layers, 6 are convolutional

layers. This deep CNN model was trained to classify Bangla

basic isolated characters of 50 classes (each representing a

character). The research utilized a publicly available dataset,

CMATERdb 3.1.2, for its classification purpose. The model

performed relatively better than the current research on this

field and wielded a 98.03% accuracy on the test dataset. This

improvement leads us to believe that more accurate results can

be achieved in the future by working with other such kinds of

datasets or by tweaking the existing model.

Keywords—Bangla character recognition; HCR;

Classification; CNN; Deep Convolution Neural Network; OCR;

Pre-processing;

I. INTRODUCTION

Character recognition is the process of associating a symbolic

identity to the image of a character. This recognition can be

distinguished into two categories. One of them is the characters from

printed text and the other one is the hand characters written by

people. Recently, handwritten character recognition has gradually

become one of the most prolific computer vision thesis topics among

researchers worldwide [1]. Intending to create an automated system

that will produce an effective enough result, which in turn will

substitute the human eyes in recognition, researchers are exploiting

different models and algorithms.

Although there have been many works done on major languages

such as English and other popular languages, the success rate in

recognizing Bangla handwritten characters is still not up to the mark

[2]. It is mostly due to the unique characteristics such as strokes,

styles, and structure of the characters varying widely among each

language [3]. Especially handwritten character recognition (HCR) is

more difficult compared to printed forms of characters [4].

Furthermore, different people's characters are unique to each person

and vary in different aspects such as size, shape, and style. In the

case of Bangla HCR, the complexity increases ten folds than in some

specific languages, mostly because of the morphologically complex

nature of Bangla characters. Bangla contains many similar shaped

characters that can look the same to even some human eyes if they

are new to the language. In many cases, one character differs from

another with a single dot or mark. Numerous variations of Bangla

language users' writing style can be observed, and the nature of

various sets of characters can often be quite similar. This scenario

has dramatically influenced the research and development of

automated systems that try to recognize handwritten characters.

There is a total of 50 characters in the Bangla alphabet that are

depicted in figure 1. Recognition of handwritten characters involves

two significant steps: extracting features from the character set and

then employing classification or learning tool(s) to classify

individual characters. In any visual recognition task, the main

challenge is feature extraction from the images. The more a model

can overcome this challenge, the better the model performs, i.e., can

classify more accurately. Convolutional Neural Network (CNN) is

the first-ever algorithm to perform well on digit recognition tasks

[4] and it has been used in this field ever since. CNN has been

performing well in such image recognition challenges mostly

because of its insensitiveness to translation variance and scale

variance of the features that are extracted from the images [2].

In this paper, Bangla handwritten character recognition is

investigated based on a deep convolution neural network (DCNN)

as the image classifier. The proposed DCNN model works around

to recognize 50 basics isolated (a single image will have only one

character) Bangla handwritten characters as accurately as possible.

The aforementioned 50 characters are depicted in figure 1, with a

symbolic representation denoting the class names of every

character.

অ

(A)

আ

(AA)

ই

(I)

ঈ

(II)

উ

(U)

ঊ

(UU)

ঋ

(R)

এ

(E)

ঐ

(AI)

ও

(O)

ঔ

(AU)

ক

(KA)

খ

(KHA)

গ

(GA)

ঘ

(GHA)

ঙ

(NGA)

চ
(CA)

ছ

(CHA)

জ

(JA)

ঝ

(JHA)

ঞ

(NYA)

ট

(TTA)

ঠ

(THA)

ড

(DA)

ঢ

(DHA)

ণ

(NNA)

ত

(TA)

থ

(THA)

দ

(DA)

ধ

(DHA)

ন

(NA)

প

(PA)

ফ

(PHA)

ব

(BA)

ভ

(BHA)

ম

(MA)

য

(YY)

র

(RA)

ল

(LA)

শ

(SHA)

ষ

(SSA)

স

(SA)

হ

(HA)

ড়

(DDHA)

ঢ়
(DHRA)

য়

(YYA)

(KHAND)

ং
(ANUS)

ঃ
(VISARG)

ঁ
(BINDU)

Fig 1. Bangla basic characters

II. RELATED WORKS

 This section provides a summary of related research work

carried out so far in the area of Bangla handwritten character

recognition. Purkaystha et al. [2] contributed to this field by using a

variation of CNN to recognize Bangla HCR. The proposed model

was a typical CNN model achieving an accuracy of 91.23% on basic

alphabets. Chowdhury et al. [5] introduced data augmentation in

Bangla HCR in addition to their CNN model. This greatly increased

their model’s accuracy comparing to their early model with no

augmentation. The accuracy of the final model was found to be at

95.25%. Rabby et al. [6] introduced a multiclass CNN model for

recognizing Bangla HCR with the help of graphemes. The trained

model, called “Borno,” performed remarkably on a dataset of more

than a million characters achieving a 92.61% accuracy. Abir et al.

[7] claimed to have a novel approach that combines CNN followed

by an inception module and a fully connected neural network (NN).

It resulted in an accuracy of 91.1% in recognizing the 50 basic

Bangla characters. Hakim et al. [8] also contributed to this field by

using a deep CNN Model. Their 9-layer sequential CNN model

classified with a 96.64% accuracy. Finally, Saha et al. [9] also

explored this field with a deep CNN model to classify isolated

characters. The proposed model named BBCNet-15 achieved a

96.40% validation accuracy on the CMATERdb 3.1.2 dataset.

III. PROPOSED METHODOLOGY

The basic phases of our proposed method for Bangla Handwritten

Character Recognition are given below.

Fig 2. Proposed Methodology

A. Data Collection & Preprocessing

a) Sample Collection

In this work, we used the public dataset CMATERdb 3.1.2 [10]

[11] which was created by the Center for Microprocessor

Applications for Training Education and Research (CMATER), a

research laboratory of Jadavpur University in Kolkata. This dataset

contains 50 different Bangla isolated handwritten characters.

Among the 50 basic characters, there are 39 constants and 11

vowels. The dataset consists of a Train folder and a Test folder

denoting the training and testing datasets. Both of these folders have

50 subfolders mapping the 50 different characters (each folder maps

to a particular character). Both in the training and testing subfolders,

each contains an equal number of sample images (240 and 50

images, respectively). This balancing ensures that the class

imbalance problem will not occur for the model while training.

Counting all the samples of the dataset in total, there are 12,000 and

3,000 images respectively for the training and testing dataset. To see

the dataset's distribution, randomly 1000 image labels were selected

and are illustrated in figure 3. The labels of the images are put in the

Y-Axis where each number denotes their corresponding class that

they belong to. The numerical numbers denote the alphabets' classes

chronically.

Fig 3. Distribution of the Dataset (Randomly Taken 1000 Image Labels)

 The dataset contains handwritten characters that were collected

from a wide range of people of different ages and sex. Therefore, it

ensures that a variety of numerous forms are available for every

character. Figure 4 shows several samples of images that contain the

first Bangla consonant character “ক” in handwritten form.

Fig 4. Raw images of character “ক”

Data Collection &
Preprocessing

Dataset
Generation

Training

Classification
using CNN

Optimization

Testing

 One sample image of every character from the dataset is also

illustrated in Figures 5 and 6 to understand of the dataset.

Fig 5. Sample images of the consonants from the dataset,

extracted from [9]

Fig 6. Sample images of the vowels from the dataset, extracted

from [9]

b) Preprocessing

Before feeding the images into the model, some

preprocessing was done to extract features from them relatively

easily. At first, the raw images were converted into grayscale

images. In a grayscale image, each pixel value is a single

integer number ranging from 0 to 255, representing a pixel's

brightness. Generally, 0 represents a black pixel, and 255

represents a white pixel. As the sizes of the collected images of

the characters were different in the first place, all of them were

resized into a 28×28 dimension to maintain an appropriate and

equal input shape. The figure below shows some resized

grayscale images of character “ক” that were used as the input

of Convolution Neural Network (CNN)

Fig 7. 28x28 resized images of character “ক”

B. Dataset Generation

After converting to grayscale images, we created the matrix of

the images. To reduce the computational cost, we converted the

pixel values to a value between 0 and 1 by dividing each value by

the maximum of 255. We separated the row and the column to make

many one-dimensional arrays of images. Each row of images

contained a classifier number by which we could identify each

character. From the dataset, there were four arrays created in the first

place. The first two arrays (x_train and y_train) were prepared for

training the machine and another two arrays (x_test & y_test) were

made for testing. The training dataset was further split into two

groups: training and validation set. From the original training

dataset, 10% of the set of images was selected to create the

validation dataset (x_val & y_val), which was used to validate while

training the model. The testing dataset of 3000 images was reserved

for the final evaluation of the proposed model. Using separate

validation and test dataset, it had been made sure that no intentional

bias would be imposed in the final tuned model's earned accuracy.

The summary of the dataset is shown in figure 8.

Fig 8. A Summary of the Dataset Used

C. Classification using CNN

As discussed earlier, this paper implements a novel deep CNN

based model for the classification task. CNN works remarkably well

in any computer vision classification task, making it one of the

primary reasons for being used very frequently in such tasks [12].

CNN is a famous deep learning architecture that can learn features

from input images without much preprocessing. Typically, a CNN

architecture consists of multiple nonlinear transformations in

various stages followed by a supervisor classifier at the end, which

has the classifying responsibility. Sample images are fed into a CNN

model and the model is trained by learning features of these images.

The final output layer matches the images with the provided labels

of those images. CNN works so successfully because of the concept

of backpropagation. In the forward pass, the gradient generated from

the mismatched errors after predicting the image labels is fed back

from the output label. The parameters in different layers of the

model are tuned with respect to the gradients generated in a way that

errors are minimized. The model repeats this process a considerable

number of times until it reaches a saturation point where the model's

final accuracy can be determined.

The CNN model that was designed is depicted in figure 9. The

model has 6 convolution layers where a max-pooling layer is used

after two consecutive convolutional layers. There is a fully

connected layer before the final output layer generating the output

scores. Each layer of the proposed CNN model is briefly described

below:

1. Convolutional Layer 1: Input data, i.e., training images

of shape (28x28x1) (Here, the digit 1 identifies that the

images are of greyscale) are fed through this layer. A total

of 64 filters of (3x3) size are used to convolute the images

for extracting features from the provided images. The

ReLU activation function is used in this layer for

introducing the nonlinear properties to the network. This

activation function is responsible for converting the input

signal of each node of the layer to an outgoing output

signal for the next layer. This activation function is

appropriate for the model because of its enormous success

in real life-practice of similar cases [13] as it is faster and

more efficient than other similar types of activation

functions. The output result’s shape of the first

convolution layer is 28x28x64 (Here, 64 identifies that the

images are convoluted with 64 filters). Since this layer

uses the "same padding" technique, the height and weight

of the output shape images remain intact.

2. Convolutional Layer 2: The second convolutional layer

has the same setup as the first convolutional with the same

number and shape of the filters, the same activation

function, and the same initializer.

3. Max Pooling Layer 1: The outputs generated by the

previous layer’s ReLU are now passed into this max-

pooling layer (2x2). This layer is used mainly to help

overcome overfitting while training the model. Such

pooling layers commonly occur after two consecutive

convolutional layers. This layer reduces the shape to

exactly half (14x14x64). A dropout of the score (0.5) [15]

is also applied to the output of the layer, which also

operates to overcome the model’s overfitting.

4. Convolutional Layer 3: This convolutional layer has the

same setup as before, except it uses 128 filters (3x3). This

layer converts the current size to 14x14x128 and passes it

to the next convolutional layer.

5. Convolutional Layer 4: Just as before, this convolutional

layer has the same setup as the previous convolutional

layer before it.

6. Max Pooling Layer 2: This max-pooling layer uses the

same configuration and the same dropout technique as the

first max pooling. This operation again reduces the shape

to exactly half (7x7x128).

7. Convolutional Layer 5: Like the other convolutional

layers of the model, this layer also follows the same setup,

except it again increases its filter numbers to 256 (3x3

size). The current shape is then converted into a 7x7x256

shape.

8. Convolutional Layer 6: This layer is a carbon copy of

the convolutional layer preceding this.

9. Max Pooling Layer 3: Following the previous two max-

pooling layers’ footsteps, this does the same thing by

reducing the current shape to exactly half. (3x3x256).

10. Fully Connected Layer: After the last pooling operation,

the results are flattened and fed to this fully connected

layer of 128 neurons.

11. Output Layer: The Softmax activation unit is applied to

every node in this layer. Every node will generate a

probability value assigned to the 50 output nodes, which

will determine the image label. The highest probability

score from the nodes will then be classified as the

corresponding label of that image.

The total learnable parameters of the model are 1,445,746. The

summary of the model is given in table 1.

TABLE I. SUMMARY OF EACH LAYER OF THE PROPOSED

MODEL

Layer Output Shape No. of Parameters

Convolution 1 (None, 28, 28, 64) 640

Convolution 2 (None, 28, 28, 64) 36928

Max Pool 1 (None, 14, 14, 64) 0

Convolution 3 (None, 14, 14, 128) 73856

Convolution 4 (None, 14, 14, 128) 147584

Max Pool 2 (None, 7, 7, 128) 0

Convolution 5 (None, 7, 7, 256) 295168

Convolution 6 (None, 7, 7, 256) 590080

Max Pool 3 (None, 3, 3, 256) 0

Fully Connected Layer (None, 128) 295040

Output (None, 50) 640

 Fig 9. An illustration of the Structure of our Proposed CNN Architecture

Fig 10. Confusion Matrix Produced for Test Sample

D. Optimization

For the training purpose, instead of having a fixed learning rate

globally and equally for all parameters, the model used an adaptive

learning method called Adadelta Optimizer [16]. This method

provides a continuous change in the learning rate while training a

model, ensuring the most effective learning rate to be used along the

learning process. Adadelta Optimizer works to reduce the current

learning rate when weights tend to receive high gradients while

updating weights. On the other hand, if the weights receive very

small or infrequent updates in the learning process, the effective

learning rate will increase. The proposed CNN model was trained

using the default values of Adadelta Optimizer (learning rate = 1.0,

decay rate = 0.95). With opting to use the Adadelta Optimizer, the

tedious work of manual tuning of the learning rate became obsolete.

E. Training the Model

For measuring this classification model's performance, cross-

entropy loss [17] (between the labels and predictions) was applied.

For initializing the weights, Xavier initialization [14] method was

used for providing appropriate weight values. This method made

sure that the neurons in the layers didn’t start training in saturation

and are kept in a reasonable range of values through different layers

while initializing. The model was trained using mini-batches of size

32. We also implemented the ReduceLROnPlateau class [18], which

can reduce the learning rate when the validation loss is not

improving. In this model, the learning rate was decayed after every

consecutive three epochs where there were no improvements. We

used a total of 100 epochs to train the model.

IV. EXPERIMENTAL ANALYSIS

 The CNN model was trained on an NVIDIA GeForce GTX 1650

(8GB GDDR6 memory), system RAM of 8 GB. It implemented the

Keras API on top of Tensorflow (CUDA toolkit 10.1.243, cuDNN

v7.6.5, and Python 3.6.12). The training accuracy and validation

accuracy for increasing epoch numbers are depicted in figure 11.

Fig 11. Training Accuracy and Validation Accuracy for increasing epochs

 Figure 12 illustrates another performance measurement of the

model by plotting the training loss and validation loss concerning

epochs.

Fig 12. Training Loss vs. Validation Loss

The final training and validation accuracy of the model after

completing training is 98.74% and 97.75%. The model is then

evaluated on the test dataset, which resulted in a 98.03% test

accuracy. The performance of the model is summarized in table 2.

TABLE 2. PERFORMANCE OF THE MODEL

Dataset Total Images Accuracy

Training dataset 10800 98.74%

Validation dataset 1200 97.75%

Test dataset 3000 98.03%

Figure 10 delineates the confusion matrix of the proposed CNN

model in further performance analysis of the model. The confusion

matrix is a 50x50 matrix where the predicted labels and true labels

of the output classes (symbolic representations of the characters, as

mentioned in figure 2) are mapped from the test data samples. As

each output class had exactly 60 images for the testing purpose, the

matrix was evaluated on this fact. From the confusion matrix, we

can see that NA (ন) was mislabeled the most. From the 60 test

samples belonging to NA, the model correctly labeled 56 images as

NA while 4 images were labeled as NNA (ণ) and GA (গ),

respectively. The main reason behind this error can be the structural

similarities between these three characters. Finally, summarizing the

confusion matrix, it holds a result of 0.98 in Precision and 0.98 in

Recall and an overall f1-score of 0.98.

 A summary of accuracy in comparison to other related works in

Bangla HCR is depicted in table 3.

TABLE 3. COMPARING THE MODEL PERFORMANCE WITH

OTHERS

Related Work Related Work Accuracy

Purkaystha et al. [2] 91.23%

Chowdhury et al. [5] 95.25%

Rabby et al. [6] 92.61%

Abir et al. [7] 91.1%

Saha et al. [9] 96.64%

Proposed CNN Model 98.03%

Looking at table 3, we can say with certainty that our proposed

model works better than other related work.

V. CONCLUSION

 Considering our proposed model's accuracy compared to the

accuracy obtained by the other models described in related work, we

can conclude that the proposed model performs better than

previously envisioned techniques. This approach could result in

advancement in the pursuit of digitization of all Bangla texts and

literature. Our model only recognizes characters at the moment. It

does not have full-text recognition capabilities yet. However, its

performance might suggest that further modifications to this model

might enlighten how to create a complete Bangla Handwritten Text

recognition system in the future. We also have plans to explore

different Neural Network models and work with various datasets to

create a more robust and effective automated system.

 REFERENCES

[1] M. Y. W. Teow, "Understanding convolutional neural networks using

a minimal model for handwritten digit recognition," 2017 IEEE 2nd

International Conference on Automatic Control and Intelligent

Systems (I2CACIS), Kota Kinabalu, 2017, pp. 167-172, doi:

10.1109/I2CACIS.2017.8239052.

[2] Purkaystha, Bishwajit, Tapos Datta, and Md Saiful Islam. "Bengali

handwritten character recognition using deep convolutional neural

network." 2017 20th International Conference of Computer and

Information Technology (ICCIT). IEEE, 2017.

[3] Pramanik, Rahul, and Soumen Bag. "Shape decomposition-based

handwritten compound character recognition for Bangla OCR."

Journal of Visual Communication and Image Representation 50

(2018): 123-134.

[4] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.

E. Hubbard, and L. D. Jackel, “Handwritten digit recognition with a

backpropagation network,” in Advances in neural information

processing systems, 1990, pp. 396–404.

[5] Chowdhury, Rumman Rashid, et al. "Bangla handwritten character

recognition using convolutional neural network with data

augmentation." 2019 Joint 8th International Conference on

Informatics, Electronics & Vision (ICIEV) and 2019 3rd International

Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE,

2019.

[6] Rabby, AKM Shahariar Azad, et al. "Borno: Bangla Handwritten

Character Recognition Using a Multiclass Convolutional Neural

Network." Proceedings of the Future Technologies Conference.

Springer, Cham, 2020.

[7] Abir, B. M., et al. "Bangla handwritten character recognition with

multilayer convolutional neural network." Advances in Data and

Information Sciences. Springer, Singapore, 2019. 155-165.

[8] S. M. Azizul Hakim and Asaduzzaman, "Handwritten Bangla Numeral

and Basic Character Recognition Using Deep Convolutional Neural

Network," 2019 International Conference on Electrical, Computer and

Communication Engineering (ECCE), Cox's Bazar, Bangladesh, 2019,

pp. 1-6, doi: 10.1109/ECACE.2019.8679243.

[9] Saha, Chandrika, Rahat Hossain Faisal, and Md Mostafijur Rahman.

"Bangla handwritten basic character recognition using deep

convolutional neural network." 2019 Joint 8th International

Conference on Informatics, Electronics & Vision (ICIEV) and 2019

3rd International Conference on Imaging, Vision & Pattern

Recognition (icIVPR). IEEE, 2019.

[10] S. Basu, N. Das, R. Sarkar, M. Kundu, M. Nasipuri, and D. K. Basu,

“Handwritten bangla alphabet recognition using an mlp based

classifier,” arXiv preprint arXiv:1203.0882, 2012.

[11] N. Das, S. Basu, R. Sarkar, M. Kundu, M. Nasipuri et al., “An

improved feature descriptor for recognition of handwritten bangla

alphabet,” arXiv preprint arXiv:1501.05497, 2015.

[12] LeCun, Yann, Koray Kavukcuoglu, and Clément Farabet.

"Convolutional networks and applications in vision." Circuits and

Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on. IEEE, 2010

[13] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet

classification with deep convolutional neural networks." Advances in

neural information processing systems. 2012.

[14] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of
training deep feedforward neural networks." Proceedings of the
thirteenth international conference on artificial intelligence and
statistics. 2010.

[15] Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural
networks from overfitting." The Journal of Machine Learning
Research 15.1 (2014): 1929-1958.

[16] Zeiler, Matthew D. "ADADELTA: an adaptive learning rate method."
arXiv preprint arXiv:1212.5701 (2012).

[17] Zhang, Zhilu, and Mert Sabuncu. "Generalized cross entropy loss for
training deep neural networks with noisy labels." Advances in neural
information processing systems. 2018.

[18] Zaheer, Manzil, et al. "Adaptive methods for nonconvex
optimization." Advances in neural information processing systems.
2018.

